MALDI analysis of oligonucleotides directly from montmorillonite.

نویسندگان

  • Dmitri V Zagorevskii
  • Michael F Aldersley
  • James P Ferris
چکیده

Oligonucleotides synthesized on a montmorillonite catalyst were analyzed directly. By mixing the catalyst with a matrix (2,4,6-trihydroxyacetophenone or 6-aza-2-thiothymine) and dibasic ammonium citrate, higher molecular weight products were detected compared with "classical" methods such as gel electrophoresis and HPLC with UV as a detector. The oligomers (30-mers and higher) were detected by mass spectrometry even though their concentration was less than 10(-4)% of the total content of the RNA. This method is different from the (MALDI) analysis of the eluates from montmorillonite, which otherwise requires desalting. Placing reaction mixtures with a high concentration of buffers on homoionic, preferably Li-containing, montmorillonite does not require desalting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MALDI MS analysis of oligonucleotides: desalting by functional magnetite beads using microwave-assisted extraction.

The presence of alkali cation adductions of oligonucleotides commonly deteriorates matrix-assisted laser desorption/ionization (MALDI) mass spectra. Thus, desalting is required for oligonucleotide samples prior to MALDI MS analysis in order to prevent the mass spectra from developing poor quality. In this paper, we demonstrate a new approach to extract traces of oligonucleotides from aqueous so...

متن کامل

Improvement of the MALDI-TOF analysis of DNA with thin-layer matrix preparation.

A new method of sample preparation was developed for MALDI-TOF-MS analysis of oligonucleotides. First, aqueous DNA samples are dispensed and allowed to dry. Then 6-aza-2-thiothymine matrix dissolved in nonaqueous volatile solvents is applied on top of the DNA residue to form a thin homogeneous film. MALDI-TOF analysis shows such preparation generates much better shot-to-shot and sample-to-sampl...

متن کامل

Analysis of oligonucleotides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

MALDI-MS is one of the most useful techniques available for determining biomolecule mass. It offers high mass accuracy, good sensitivity, simplicity, and speed. Because singly charged ions of oligonucleotides are typically observed, MALDI-MS spectra are easy to interpret. This unit presents protocols for sample preparation and purification, matrix preparation, and matrix/analyte sample preparat...

متن کامل

DNA sequence analysis by hybridization with oligonucleotide microchips: MALDI mass spectrometry identification of 5mers contiguously stacked to microchip oligonucleotides.

Matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) has been applied to increase the informational output from DNA sequence analysis. It has been used to analyze DNA by hybridization with microarrays of gel-immobilized oligonucleotides extended with stacked 5mers. In model experiments, a 28 nt long DNA fragment was hybridized with 10 immobilized, overlapping 8mers. Then, in...

متن کامل

Accurate mass measurement of DNA oligonucleotide ions using high-resolution time-of-flight mass spectrometry.

Matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) time-of-flight mass spectrometry (TOFMS) play an essential role in the analysis of biological molecules, not only peptides and proteins, but also DNA and RNA. Tandem mass spectrometry used for sequence analysis has been a major focus of technological developments in mass spectrometry, but accurate mass measure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Society for Mass Spectrometry

دوره 17 9  شماره 

صفحات  -

تاریخ انتشار 2006